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Abstract. Contrails and contrail-induced cirrus clouds are considered the most significant non-CO» contributors to aviation’s
climate impact and occur primarily in ice-supersaturated regions (ISSRs). Reliable prediction of relative humidity over ice
(RHj¢) in the upper troposphere and lower stratosphere allows mitigating their formation by re-routing flights. We imple-
mented a two-moment cloud ice microphysics parameterization within a ten-member Ensemble Prediction System (EPS) us-
ing the global ICON (ICOsahedral Nonhydrostatic) model. RHj.. predictions were evaluated against radiosonde and aircraft
observations from the Northern Hemisphere during 2024-2025. Treating ISSR prediction (RH;j.. > 100%) as a binary classifi-
cation problem, we find that the probability of detection (POD) of ISSRs increases to 0.6 for the two-moment scheme (ICON
2-Mom), compared to 0.4 for the operational ICON with a one-moment ice microphysics scheme, while maintaining a low
false positive rate (FPR < 0.1). Further evaluation of the ICON 2-Mom EPS using Receiver Operating Characteristic (ROC)
analysis shows a POD of 0.8 for a decision model that requires at least three ensemble members to predict ISSR, with an
FPR of 0.13. Additionally, we incorporate ensemble spread information to develop a meta-model that further reduces the FPR.
Since June 2024, more than 100 flights have been rerouted based on ICON 2-Mom EPS predictions in a contrail avoidance
trial, demonstrating the practical value of improved ISSR forecasts for climate-conscious aviation. This study highlights the
significant potential of ensemble-based modeling for predicting ISSRs and RHjc,, supporting environmentally optimized flight

planning and advancing applications in weather and climate science.

1 Introduction

The impact of aviation on climate change is a growing concern, especially as the number of aircraft increases (Yamashita et al.,
2016; Grewe et al., 2021). Air traffic is estimated to contribute to global warming by approximately 3.5% (Lee et al., 2023),
with an uncertainty range of 2% - 14% (Lee, 2018), caused by CO, and non-CO- effects.

While the uncertainty range for the climate impact of COy emissions is relatively small, there is significant variability asso-
ciated with non-COy, effects arising from emissions such as NO,, H2O, and, notably, the formation of persistent contrails and

contrail-induced cirrus clouds (Matthes et al., 2017; Klower et al., 2021; Liihrs et al., 2021; Lee et al., 2023). These phenomena,
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collectively referred to as aircraft-induced clouds, present a complex challenge for climate assessment. While Kércher (2018)
estimate that their contribution accounts for more than half of aviation’s total radiative forcing, Bickel et al. (2020) contend that
the net warming effect might be less than that of COq, primarily because it may be partially offset by a decrease in natural cirrus
cloud coverage. Given the variety of findings and the potential trade-off between CO5 and non-CO, impacts, effective strate-
gies to mitigate the climate impact of aviation must consider both types of effects. Among these strategies, climate-optimized
flight routing has gained attention in recent years, as it seeks to minimize aviation-induced warming by accounting for a com-
prehensive range of atmospheric impacts (Schumann et al., 2011; Grewe et al., 2017a, b; Matthes et al., 2017; Simorgh et al.,
2022). This approach is built upon climate response models such as the Contrail Cirrus Prediction (CoCiP) model (Schumann,
2012), its Python adaptation PyContrails (Shapiro et al., 2023), or algorithmic Climate Change Functions (aCCF) (Dietmiiller
et al., 2022; Matthes et al., 2023), which provide the necessary computational framework.

Climate response models rely on four-dimensional meteorological fields — typically derived from numerical weather predic-
tion (NWP) models — in which relative humidity over ice (RHjc.) is a key parameter for evaluating contrail formation according
to the Schmidt—Appleman criterion (Schmidt, 1941; Appleman, 1953; Schumann, 1996). To provide climate response models
with physically consistent and representative atmospheric inputs, it is therefore crucial that NWP models accurately capture
RHjc., especially under conditions of ice supersaturation (RH;.e > 100%), which are essential for persistent contrail develop-
ment. Yet, despite its critical role in contrail prediction, RH;j.. remains one of the most uncertain variables in NWP models,
with ongoing difficulties in capturing its variability, dynamics, and interactions with cloud microphysics.

Errors and uncertainties in Numerical Weather Prediction (NWP) models stem from various factors, including sparse and
noisy observational data for initial conditions, as well as inherent limitations in model physics and numerical methods. Among
these challenges, accurate prediction of relative humidity over ice (RH;..) remains particularly difficult, even for state-of-the-
art models. This is largely due to the limited availability of upper tropospheric humidity observations for data assimilation, a
large variability of humidity fields, and the incomplete understanding of ice nucleation and cirrus cloud formation processes.
Parameterizations of ice microphysical processes are therefore an active area of research (Kércher et al., 2022; Seifert et al.,
2022; Spichtinger et al., 2023; Achatz et al., 2024; Liittmer et al., 2024). Additionally, predicting ice supersaturation poses
challenges due to resolution limitations: NWP models typically represent mean atmospheric values and may miss highly
localized ice supersaturated regions (ISSRs), particularly those associated with unresolved mesoscale gravity waves (Wilhelm
etal., 2018).

One way to circumvent these limitations is to build a postprocessing model which receives variables such as temperature,
RHic., and others, and outputs RH;... Wang et al. (2025) focused their research on reanalysis data, deriving their postprocessing
model inputs from ERAS (ECMWF Reanalysis v5) data, and trained their model using humidity measurements from the In-
service Aircraft for a Global Observing System (IAGOS), showing RH;.. mean absolute error improvements in test data.

The use of high-resolution NWP models is another approach to dealing with uncertainties in predicting RHjc.. In a recent
study by Thompson et al. (2024), several leading high-resolution NWP models have been validated with respect to RH;., using
radiosonde and IAGOS data, and the results are discussed in the context of contrail avoidance flight routing. RHj.. predictions

of IFS (Integrated Forecasting System), GFS (Global Forecast System), and S-WRF (Weather Research and Forecasting model
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configured by SATAVIA) are evaluated and moderate scores in terms of the F score and the Matthews Correlation Coefficient
were found. The study highlighted that a correct prediction of conditions which are not conductive to contrail formation,
mainly the condition of non-ISSR, is also crucial, as false negatives (thus, incorrect ISSR predictions) could potentially lead
to unnecessary re-routing. For the S-WRF model, they found a true positive rate for the non-ISSR condition of 90.7 % and
a true positive rate for the ISSR condition of 45.9 %. Hence, for ISSR they observe a false positive rate of 9.3% and a false
negative rate of 54.1%. The authors point out that the relatively high false negative rate of ISSR indicates missed opportunities
for contrail avoidance, which is not ideal, but also has no consequences other than the current status quo of aviation impacts.
Conversely, the low false positive rate of ISSR suggests that there may be only few worst-case scenarios where aircraft are
diverted to an incorrectly predicted non-ISSR due to an incorrectly predicted ISSR, resulting in both additional CO, emissions
and possible contrail formation.

In our study, we investigate the ability to predict RHj.. by using a two-moment cloud ice microphysics parameterization
scheme within a ten-member Ensemble Prediction System (EPS) in the global ICON (ICOsahedral Nonhydrostatic) NWP
model (Zangl et al., 2014). ICON is used by the German Meteorological Service (DWD) and is developed through the ICON
partnership, which includes the Deutsches Klimarechenzentrum, Max Planck Institute for Meteorology, Karlsruhe Institute of
Technology, Center for Climate Systems Modeling, and DWD. In the operational configuration of the ICON model, cloud
ice microphysics is represented by a one-moment scheme in which ice mass is considered a prognostic variable. However,
this approach cannot capture higher levels of supersaturation. To improve predictions of RHj¢. in the upper troposphere and
lower stratosphere (UTLS), we adopt a two-moment cloud ice scheme that includes ice particle number density as an additional
prognostic variable. We have implemented a simplified and slightly adapted version of Kohler and Seifert (2015), which allows
a more realistic representation of ice microphysical processes than the operational model, while remaining consistent in the
warm phase.

Building on ICON with the two-moment ice microphysics scheme, we set up an ensemble prediction system analogous to
the operational global ICON. To balance the benefits of ensemble forecasting with the constraints of computational resources,
we selected ten of the 40 ensemble members used in the operational configuration.

Ensemble forecasting offers a powerful framework for assessing both the predictability of atmospheric phenomena and the
uncertainties inherent in numerical weather prediction (NWP) models (Epstein, 1969; Lewis, 2005). It is state-of-the-art to
describe the initial conditions of an NWP model using probabilistic distributions (Du et al., 2018) and to perform ensemble-
based data assimilation, not only to obtain initial conditions for ensemble forecasts, but also for deterministic forecasts (Snyder
and Zhang, 2003; Hunt et al., 2007). Furthermore, NWP model imperfections can be addressed by multi-model, multi-physics
and stochastic physics approaches (Berner et al., 2011) integrated into the ensemble forecast generation process.

Ensemble forecasts inherently provide access to uncertainty estimates by generating a probability distribution for each
grid point. Although taking the ensemble mean is a common method for deriving a more stable deterministic forecast, ISSR
prediction may benefit from alternative uses of ensemble information. Since NWP models generally represent mean conditions,
extreme RHj. values within the ensemble may indicate potentially extreme ISSR events. Additionally, the spread of RHice

values, as captured by the standard deviation, may improve the reliability of ISSR classification.
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Nevertheless, the practical application of ensemble forecasts remains challenging. While they provide access to uncertainty
and thus represent a more complete and realistic forecasting framework compared to deterministic point forecasts, they still face
the typical challenges associated with forecast application. Not only is the process of NWP forecasting inherently imperfect at
each step (data collection, data assimilation, model physics and model numerics) but the interpretation of the resulting forecast
output, whether deterministic or probabilistic, also leaves room for methodological variability. Different post-processing tech-
niques and user perspectives can lead to significant differences in how forecasts are applied in real-world scenarios (Du et al.,
2018), especially in the case of ensemble forecasts.

The main contribution of this study is to carefully analyze and interpret the EPS predictions of RH;.. based on ICON with
the two-moment ice microphysics scheme (ICON 2-Mom EPS) through verification with radiosonde observations. For this
purpose, several ensemble metrics are considered and meta-models based on the EPS are discussed, showing a great potential
of ensemble-based forecasts of RH;.. compared to deterministic forecasts.

The ICON 2-Mom EPS has been established as a dedicated forecasting system at DWD to provide continuous meteorological
data for research on contrail avoidance flights. This setup was developed within the D-KULT project (demonstrator climate and
environmentally friendly air transport), which aims to demonstrate the feasibility of climate-optimized flight trajectories with
a focus on reducing contrail formation in European airspace. It aims to optimize flight paths using climate response models
that account for both CO5 and non-CO,, effects, while balancing emissions, noise, operating costs and real-world constraints
such as airspace regulations and airport capacity. One of the components is the integration of the ICON 2-Mom EPS forecast
to identify potential persistent contrail regions for contrail avoidance flight planning. In real-world trials, more than 100 flights
have already been rerouted using information from these forecasts, demonstrating the practical application of climate-aware
flight paths.

The outline of this paper is as follows: In Section 2, we describe the details of the dedicated ICON forecasting system,
in particular, the two-moment cloud ice microphysics scheme and the ensemble setup. In Section 3, an overview over the
in-situ observation measurement data used for verification is given. The verification methodology and results are presented
and analyzed in Section 4, where we start by evaluating the deterministic model with the new two-moment ice microphysics
scheme and then move on to analyze ensemble metrics of the EPS setup. This is followed by a discussion of the results in

Section 5 and a conclusion in Section 6.

2 Model

In the following, the dedicated ICON forecasting system is described, which has been specifically established for climate-
optimized flying and differs from the operational setup of the ICON model at DWD. The two main changes are the use of a
two-moment cloud ice microphysics scheme and the reduction of ensemble members, both of which are described in detail

below.
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2.1 Two-moment Cloud Ice Microphysics parameterization in ICON

Accurate prediction of the potential for persistent contrail formation requires a realistic representation of relative humidity
over ice in NWP models. A key factor in this is the model’s ability to simulate the phase relaxation time — the timescale over
which water vapour transitions to ice. In the operational configuration of ICON, a one-moment cloud ice microphysics scheme
is used, in which the specific ice mass is treated as a prognostic variable and the ice particle number density is estimated
from temperature. This approach tends to overestimate particle numbers at low temperatures, resulting in unrealistically short
relaxation times and limiting the ability of the model to represent ice supersaturated conditions.

To address these limitations, a two-moment ice microphysics scheme has been implemented in ICON, in which the ice
particle number density is treated as an additional prognostic variable. The implementation is based on previous versions, as
described in Kohler and Seifert (2015), and has been adapted to maintain consistency with the operational one-moment scheme
of the ICON model, using a single ice mode. In the updated version, heterogeneous ice nucleation is parameterized based on
laboratory measurements from the Karlsruhe Institute of Technology (KIT) (Ullrich et al., 2017), while homogeneous nucle-
ation follows the approach of (Kércher, 2018). This two-moment scheme provides a more physical and realistic representation
of ice microphysics, especially under conditions relevant to contrail formation. More details on the scheme and its implemen-
tation can be found in the Appendix A. The difference in model behavior is illustrated in Fig. 1(a), which shows the global
structures of relative humidity over ice with the operational ICON (top) and the ICON with the two-moment cloud ice micro-
physics scheme (bottom). While the cloud structures remain similar, the degree of ice supersaturation increases significantly
with the new two-moment cloud ice scheme. The extent to which this is realistic is elaborated in Section 4 in comparison with

observational data.
2.2 Ensemble Prediction System

For the D-KULT project, a dedicated ten-member global ensemble prediction system based on the operational ICON model
(Reinert et al., 2025) has been established. Although the full operational system consists of 40 ensemble members, the reduced
configuration of 10 members was found to be sufficient to meet the project requirements for forecasting key variables such
as relative humidity over ice. The ensemble generation is based on the Local Ensemble Transform Kalman Filter (LETKF)
method (Ott et al., 2004; Hunt et al., 2007), which perturbs the initial conditions of all members simultaneously in a member-
dimensional space. The initial state of each ensemble member is computed by combining its background state — a short-range
forecast — with a weighted correction derived from the differences between observations and model background. These weights
are computed via a gain matrix that incorporates both observation error and background error covariances, ensuring that each
member assimilates observation information in a distinct but dynamically consistent way.

In addition to initial condition perturbations, the system includes stochastic perturbations of selected physical parameteri-
zations. For the global ensemble system, these physical parameters are randomly perturbed for each ensemble member at the
start of the forecast and remain fixed throughout the forecast integration. This approach introduces variability among ensemble

members while preserving the consistency of individual forecast trajectories. The combined perturbation strategy ensures a
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Figure 1. Relative humidity over ice (RHic) of the operational ICON with one-moment ice microphysics scheme (top row) and of ICON
with two-moment ice microphysics scheme as implemented in the dedicated system (bottom row): (a) Global forecast-only data of RHic.
near the tropopause; (b) normalized histograms of RHi.. of Vaisala RS41 radiosonde data and ICON; (c) scatter plot of RHjc. of Vaisala
RS41 radiosonde data versus ICON forecasts with a lead time of 12 hours; pressure between 150-300 hPa, corresponding to most common

commercial flight altitudes.

realistic representation of forecast uncertainty, which is crucial for assessing the sensitivity of contrail formation potential to

meteorological variability.
2.3 Model Setup

The dedicated system for the D-KULT project is based on ICON version 2.6.6. Detailed information on the adapted code can
be found in the Appendix A. The system runs on the ICON R3B06 grid, which has a horizontal spacing of about 26 km and a
vertical spacing of about 200 m at the most common commercial flight altitudes of 8.5-12.5 geopotential kilometers. It starts
from the operational analysis, which is based on the one-moment ice microphysics scheme, so that we require a spin-up time
of at least 6 hours in our evaluations below to build up ice supersaturation. The model is run four times a day, initialized
at 00, 06, 12, and 18 UTC with a forecast lead time of 60 hours, producing hourly forecasts. The system consists of ten
ensemble members, whose generation is based on the first ten members of the operational ensemble prediction system. This is
a reasonable approach as discussed in the Appendix B.

The model outlined forms the basis for the evaluations performed in this study and will be referred to as ICON 2-Mom

EPS in the remainder of this study. Since the dedicated system does not consist of an additional deterministic model run, we
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use individual members of the ensemble as approximates to a deterministic model setup for our evaluation, denoted by ICON
2-Mom.

3 Observation Data

This study emphasizes in situ measurements for verification, with the primary analysis based on radiosonde data. Additionally,

data from the In-Service Aircraft for a Global Observing System (IAGOS; see https://www.iagos.org/) were considered.
3.1 Vaisala RS41 Radiosonde Data

We restricted our radiosonde verification to Vaisala Radiosonde RS41 data, as this type of radiosonde is best scored for humidity
measurements in the UTLS (Dirksen et al., 2022; Borg et al., 2023). The temperature sensor utilizes stable, linear resistive
platinum technology that yields a measurement accuracy of +0.2°C. The humidity sensor integrates humidity and temperature
sensing elements and is based on capacitive polymer technology with an accuracy of +3% RH. Height, pressure, and wind
speed and direction data are derived from GPS measurements. For more details on techniques and precision compare Vaisala
(2013). We limited our verification to the Northern Hemisphere, where 105 radiosonde stations frequently yield Vaisala RS41
data. In Figure 2(a), the radiosonde locations are shown. Most of them produce daily data from two ascents (around 0 UTC and
12 UTC), which is stored in so-called TEMP BUFR files: TEMP reports include a standardized set of meteorological data, such
as temperature, air pressure, wind speed and direction, and humidity at various atmospheric levels. The files are in the BUFR
(Binary Universal Form for the Representation of meteorological data) format which is a standardized binary format used
by the World Meteorological Organization (WMO) to encode and transmit various types of weather observations, including
radiosonde data.

The stored Vaisala RS41 radiosonde height resolution is approximately 1 gpm, with a measurement accuracy of £10gpm.
In the TEMP files, the dew point temperature is stored from which we derive RH;.. as described in Appendix C. In Fig. 2(b),
example radiosonde height profiles of temperature and RH;.. are shown together with the corresponding ICON 2-Mom EPS
data.

3.2 TAGOS Near-Real-Time Data

In addition to radiosonde data, we use in-situ aircraft data for our verification. The In-service Aircraft for a Global Observing
System (IAGOS) is a European research infrastructure that uses commercial aircraft to collect atmospheric data. IAGOS-CORE
contains several measurement instruments, e.g., for ozone, carbone monoxide, humidity, and cloud particles, and optionally
for nitrogen oxides, greenhouse gases, and more (https://iagos.aeris-data.fr/instrumentation/). Again, the humidity measure-
ment technology used here combines humidity and temperature sensing elements. In more detail, it consists of a capacitive
relative humidity sensor (Humicap-H, Vaisala, Finland) and a platinum resistance sensor (PT100) for the measurement of the
temperature at the humidity sensing surface. The time resolution of the temperature measurements is 4 s with an accuracy of

+0.5 K, while the time resolution of the humidity measurements ranges from 1Is at 300K to 120s at 200K, with an accu-
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Figure 2. Radiosonde (left) and IAGOS (right) observation data. (a) Locations of 105 stations equipped with Vaisala RS41 radiosondes
in the Northern Hemisphere. (b) Example height profiles of temperature and RHj.. from Vaisala RS41 (TEMP) observations and ICON
2-Mom EPS forecasts with a lead time of 12 h. (c¢) Rank histogram: For each spatio-temporal point (comprising ICON 2-Mom EPS values
and the corresponding radiosonde measurement), the observed value is ranked among the ten ensemble members, and the resulting ranks
are displayed in a histogram. (d) IAGOS flight routes of 188 flights from December 2024, limited to the Northern Hemisphere. (e) Spatio-
temporal comparison of flight data and ICON 2-Mom EPS: Time series of temperature and RHjc. from one example flight. (f) Rank histogram
for IAGOS flight data, analogous to (c).

racy of +6% (for more details, see www.iagos.org/iagos-core-instruments/h20/). There are several levels of data processing,
from which we have used near-real-time (NRT) data, where humidity measurements are subject to automated quality control,
usually within 72 hours (https://iagos.aeris-data.fr/levels/). Only data with validity flag "good" were used (https://iagos.aeris-
data.fr/data-quality/) for 625 flights between August 2024 and January 2025. Fig. 2(d) shows the flight routes for December
2024. For a highlighted example flight route, the temperature and RH;. time series are shown together with the corresponding

ICON 2-Mom EPS data (Fig. 2(e)). Similar to the radiosonde verification, the analysis is confined to the Northern Hemisphere.

4 Verification Analysis

We evaluated the dedicated ICON system in two steps to successively unravel the improvements in predicting RHjc. resulting
from the adapted two-moment ice microphysics scheme (ICON 2-Mom) and the ensemble setup (ICON 2-Mom EPS). The
methodology used to verify the deterministic model also serves as the basis for the verification of the ensemble prediction

system.
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4.1 Verification of Deterministic Model

In the following subsections, we start with the verification of the deterministic model ICON 2-Mom and, in particular, compare
it to the operational ICON with the one-moment cloud ice microphysics scheme (denoted by ICON I1-Mom). When validating
an NWP model with observational data, climatological comparisons on the one hand and spatio-temporal comparisons (e.g.,
with metrics such as the RMSE) on the other can span the evaluation horizon. We start with a brief look at both, before moving

on to consider categorical scores.
4.1.1 Relative Frequency Distribution of RH;,

To enable a climatological comparison between model and observations, we analyze normalized histograms of RH;.. within
the 8.5-12.5 km geopotential height range. Figure 1(b) displays the observed RH;. relative frequency distributions (densities),
shown alongside the corresponding model-based distributions from the operational ICON 1-Mom (top) and ICON 2-Mom
(bottom) configurations.

Pronounced differences emerge in the density tail, which reflects ice supersaturation. The operational system exhibits a sharp
peak near 100%, followed by a rapid decline, with maximum RH;.. values reaching only ~103%. In contrast, the two-moment
scheme more accurately captures the tail structure, slightly overshooting at low supersaturation but successfully reproducing
the upper range, including RH;. values up to 135%. A few higher values were excluded from the plot due to axis truncation,

ensuring comparability without distortion from rare outliers.
4.1.2 Spatio-temporal Comparison

The ICON grid employed features a horizontal resolution of approximately 26 km and a vertical resolution of 200 m within
the 8500-12 500 gpm altitude range. Radiosonde data from a given station are mostly horizontally fixed and provide dense
vertical coverage. To generate matched ICON-radiosonde data pairs, the ICON grid cell center closest to each radiosonde
station was first identified. Subsequently, radiosonde observations were linearly interpolated to the ICON levels, as the model
provides mean values across vertical layers with considerably lower resolution than the radiosonde data. Over the 14-month
verification period, this approach yielded approximately 820000 spatio-temporal matching points from more than 63 000
radiosonde profiles. Figure 2(b) shows example radiosonde profiles of temperature and RH;. from one station, compared with
ICON ensemble values from the nearest grid cell center.

TAGOS data represent aircraft-based observations and thus capture horizontal trajectories spanning several hours. Matched
ICON-TAGOS data pairs were generated by identifying all ICON grid cell centers that were nearest to at least one point along
each flight path. Each selected ICON cell was then paired with its closest flight data point, and the model data were vertically
interpolated to match the altitude of that observation. An ICON spin up time of a minimum of 6 hours was required. Over
the four-month verification period, this procedure yielded approximately 200 000 spatio-temporal matching points from 625
flights. Figure 2(e) shows an example time series of temperature and RHj.. from an intercontinental flight, together with the

corresponding [CON ensemble values from the nearest model grid cell.
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In the main part of this study, we limit our verification to radiosonde data; the use of IAGOS data is explicitly indicated
whenever applicable. As an initial step toward evaluating the spatio-temporal matching points, we examined a simple scatter
plot. While ICON 2-Mom reproduces the supersaturation range comparably to the observations, notable scatter remains around
the one-to-one line (see Fig. 1(c), showing ICON 1-Mom, top, and ICON 2-Mom, bottom). However, there is no absolute need
for perfect agreement between modelled and observed RH;.. values. In our context, it is sufficient for the model to realistically
capture the occurrence and extent of ice supersaturation. Crucially, the model should be able to distinguish between ISSR
events and non-events, both of which have important operational implications for flight planning and routing. To evaluate this
capability, we focus on categorical scores below such as the probability of detection and the false positive rate for conditions

in which RH;.. exceeds selected thresholds.

4.1.3 Categorical Scores of ICON 2-Mom

Instead of analyzing the full continuous range of RH;., the values can be partitioned based on a specified threshold. This
results in a binary classification, distinguishing between two events:

RH;.. < threshold or RH;., > threshold.

In this study, we are particularly interested in ice supersaturation (RHj.. > 100%) and events of higher ice supersaturation
(RHjee > 100%). The spatio-temporal matching points between model output and observational data are categorized in a

confusion matrix, which serves as the foundation for computing categorical scores (see Table 1). In the remainder of this

RHice > threshold positive prediction  negative prediction

positive observation | true positive (TP)  false negative (FN)
negative observation | false positive (FP)  true negative (TN)

Table 1. Confusion matrix: Categorization of predicted events (positive predictions) and predicted non-events (negative predictions) in

relation to the actual observed situation.

study, we consider events of the type

{RHjce > threShO]d}thresholde{100%,105%,110%,120%}~

As a starting point for evaluating categorical performance, we consider the Frequency Bias Index (FBI), defined as the ratio of

the number of predicted events to the number of observed events:

The results are shown in Figure 3(a). For the ISSR event (blue curves), the FBI is slightly above 1 for ICON 2-Mom, indicating
a modest overprediction, whereas ICON 1-Mom exhibits lower values around 0.75, reflecting underprediction. In both config-

urations, the FBI remains relatively constant across the examined altitude range of 8.5-12.5 km geopotential height. At higher
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Figure 3. Categorical scores of operational ICON (1-Mom) and ICON 2-Mom versus Vaisala Radiosonde RS41 measurement data. All data
from the Northern Hemisphere and in most frequent flight altitudes of 8.5 - 12.5 km geopotential height; verification period of 11.5 months:
June 15th, 2024 - May 31th, 2025; ICON initial times 12 UTC and 00 UTC; forecast lead time 12 h; linear interpolation of observation
measurements with respect to ICON (on average, there are 13 model levels in the considered altitudes); yielding ~ 680 000 samples in total,
with ice supersaturation in ~ 13 % of cases. Scores of events of ice supersaturation: (a) Frequency bias index: ratio of model events to
actual observed events; (b) Probability of detection: proportion of actual observed events that are correctly identified by the model; (c) False
positive rate: proportion of actual observed non-events that are incorrectly classified by the model as positives; (d) Precision: proportion of
positive predictions that are correct. (e) Matthews correlation coefficient: considering all four entries of the confusion matrix (TP, FP, FN,

TN) together (missing values are due to vanishing denominators); (f) Vaisala RS41 radiosonde observation measurements.
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RHi. thresholds, the FBI for ICON 2-Mom is slightly below 1 for lower heights but rises to a maximum of approximately 1.5
near 12 km for the event RHjc. > 120%. In contrast, ICON 1-Mom yields an FBI of zero across the entire height range, indicat-
ing a failure to detect high supersaturation events. These results demonstrate that the two-moment scheme not only predicts ice
supersaturation more frequently than the one-moment scheme but also tends to slightly overestimate observed event frequency.
Meanwhile, the one-moment scheme consistently underestimates event occurrence.

Moving on to the Probability of Detection (POD), which is the proportion of observed events correctly identified by the
model:

TP

POD=-—
TP +FEN

we find that, for ISSR events, the POD increases from about 0.4 for ICON 1-Mom to about 0.6 for ICON 2-Mom and is
almost constant over the altitude range in both cases. For events defined by higher RH;., thresholds, the two-moment scheme
retains some detection capability, with the POD gradually decreasing to about 0.15-0.2 for RHj. > 120%. In contrast, as also
indicated by the FBI, the one-moment scheme fails to detect RH;., values above 105%, yielding POD values near zero across
the altitude range.

To complement the probability of detection, also known as sensitivity, we additionally consider the False Positive Rate (FPR
= 1 - specificity), which quantifies the proportion of actually observed non-events that are incorrectly classified by the model
as positive events:

FP

FPR = ——.
TN + FP

The false positive rate is relatively low in all cases, reaching a maximum of slightly above 0.1 for the two-moment scheme and
RHice > 100% (Fig. 3(c)).

POD and FPR are both computed relative to the ground truth: the former with respect to the number of observed events, and
the latter with respect to the number of observed non-events. It may also be informative to examine the proportion of predicted
events that are actually correct, quantified by the precision:

TP

precision = ——.
TP +FP

For the ISSR event, both schemes yield similar precision values between 0.5 and 0.55 across the entire altitude range (see Fig.
3(d)). For events with higher RH;.. thresholds, the precision of ICON 2-Mom decreases successively, reaching values as low
as 0.2 for RHje > 120%. In contrast, ICON 1-Mom yields very few or even no positive predictions in these regimes, making
precision largely undefined; accordingly, it is omitted for these cases.

In the context of flight planning, accurate prediction of non-ISSR conditions is also critical, as false negatives in this category
can lead to unnecessary re-routing and, consequently, avoidable increases in CO- emissions. When considering the comple-
mentary events (RH;.. < threshold) as "positive" events, the model exhibits high precision, with average values exceeding 0.9

across all threshold levels. Combined with the low false positive rate observed for RHjc. > threshold events, this high precision

further supports the conclusion that ICON 2-Mom is quite reliable in detecting non-ISSR conditions.
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Another way to account for the class imbalance in our dataset (13% ISSR events) and the practical relevance of both event
categories is to employ the Matthews Correlation Coefficient (MCC) as a balanced performance metric. Unlike single-aspect
measures, the MCC incorporates all four elements of the confusion matrix simultaneously into a single scalar value, making it
particularly suitable for evaluating classification performance under skewed data distributions:

TP x TN — FP x FN

MCC = :
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

The MCC ranges from -1 to +1, where +1 indicates perfect discrimination between events and non-events, O reflects ran-
dom predictive skill, and -1 represents complete misclassification. The results of our analysis are shown in Figure 3(e). For
ISSR/non-ISSR classification (blue curves), ICON 2-Mom achieves an average MCC of 0.47 across all altitudes, while ICON
1-Mom yields lower values between 0.38 and 0.39. At higher RH;¢, thresholds, the MCC for ICON 2-Mom decreases succes-
sively, reaching a minimum of approximately 0.16. In contrast, the MCC for ICON 1-Mom approaches zero (or is undefined
where the numerator vanishes), indicating no predictive skill.

In summary, for ISSR events, ICON 2-Mom achieves a moderate MCC of nearly 0.5 and a 50% higher POD compared to
the operational ICON 1-Mom, while maintaining a relatively low false positive rate below 0.1 at most altitudes. Nevertheless,
a POD of 0.6 suggests that further improvements are possible, and we continue to explore potential gains from the ensemble

setup introduced in Section 2.2.
4.2 Verification of Ensemble Prediction System ICON 2-Mom EPS

Before examining categorical verification metrics for our ensemble configuration (ICON 2-Mom EPS), we begin this section
with a general assessment of the full (continuous) ensemble output and the ensemble spread as a measure of uncertainty. The
first question we address is whether the ensemble spread adequately captures the variability observed in the data. Although the
ensemble captures some of the variability present in the observations, it remains underdispersive, as indicated by the U-shaped
rank histogram (Fig. 2(c)). This underdispersion can, in part, be attributed to the inherent spatial averaging over model grid
cells, which tends to smooth out extremes. From a physical modeling perspective, key contributing factors may include the
absence of subgrid-scale gravity waves in the model configuration and the use of prescribed aerosol fields from climatology,
both of which limit variability in ice nucleation conditions. We also observe a more pronounced negative bias within the rank
histogram, indicating that the model tends to underestimate RH;.. more often than it overestimates RH;... Thus, further post-
processing of the EPS model forecasts may be useful for predicting RHj.. and, in particular, for identifying ISSR or higher ice

supersaturation.
4.2.1 Prediction of ISSR and Higher Ice Supersaturation

Again, in the context of flight routing, the most important property of the EPS is its ability to distinguish between ISSR and
non-ISSR conditions (or higher supersaturation), as both have significant practical implications. Therefore, we again consider
binary events such as ice supersaturation (RHj.. > 100%) and higher supersaturation (RH;¢. > 100%): The ensemble inherently

provides probabilistic forecasts for these events via the proportion of members with the corresponding event. We start by
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Figure 4. Ensemble metrics targeting the ability of the model to discriminate between events and non-events (e.g., ISSR and non-ISSR
in blue); verification period 14 months: April 2024 - May 2025, leading to ~ 820000 samples. (a) Discrimination diagram: Conditional
distributions of EPS forecast probabilities; conditioned on that the event was actually observed in the measurement data and conditioned
on that it was not observed. (b) Receiver Operating Characteristics (ROC) curve: Probability of detection versus false positive rate of ice
supersaturation events for varying "decision" models (pseudo-deterministic models received from the EPS by applying various probability

threshold conversions).

considering two conditional distributions of the supersaturation forecast probabilities; the first conditional on the event actually
being observed in the measurement data, and the second conditional on the event not being observed in the measurement data. In
both cases, the corresponding relative frequencies of the EPS forecast probabilities are plotted in a histogram, the discrimination
diagram (Fig. 4(a)). Little overlap between the two conditional distributions indicates good discriminability. More specifically,
the "not observed" distribution has a dominant peak at zero, indicating that the ensemble members tend to agree when no
ISSR or higher ice supersaturation is present. For increasing forecast probabilities, the "not observed" distribution decreases
rapidly and is of the same order of magnitude as the "observed" distribution for values of 0.1 and 0.2, before dropping almost
to zero for higher forecast probabilities. In contrast, the "observed" distribution is much more uniform, increasing only slightly
from low to high prediction probabilities in the case of ISSR (blue). For higher RH;. thresholds, its shape changes from a
more uniform to a more pronounced left-sloping distribution, gradually overlapping more and more with the "not observed"
distribution. This shows that the ability of the model to discriminate between events and non-events decreases significantly for

events with higher ice supersaturation.
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Focusing on the ISSR event, the corresponding discrimination diagram shows that the overlap between the two conditional
distributions becomes small for forecast probabilities above approximately 0.3. This observation motivates the next step: iden-
tifying an appropriate threshold to convert forecast probabilities into binary predictions (0 or 1), thereby enabling a "yes"/"no"
decision for the presence of ISSR or higher ice supersaturation. Such a threshold-based conversion yields what we term a
"pseudo-deterministic” model. Throughout this study, we refer to these models as decision models, characterized by their un-
derlying conversion thresholds. Specifically, the k-out-of-10 decision model defines the threshold as %k/10. That is, if at least
k out of the 10 ensemble members predict the event, the model outputs a positive prediction. Formally, for each forecast

probability p produced by the original EPS, the deterministic forecast p.oqy is given by:

1, ifp>+&

10°

)

k-out-of-10 decision model : peony =

(1

0, otherwise.

We also refer to this model simply as decision model k.

The challenge of finding a "good" decision model can be addressed using the Receiver Operating Characteristic (ROC) curve,
which plots the POD versus the FPR of all potential decision models. The construction of the ROC curve for a binary event
is as follows: For increasing probability thresholds, here 0.0, 0.1, 0.2, up to 1.0, the EPS forecast probabilities are converted
to 0 or 1 depending on whether they are below or above the threshold as defined in (1). For the resulting pseudo-deterministic
decision models, the POD and FPR can be calculated with respect to the observed data and plotted on a curve. For the ISSR
event this results in the blue curve in Fig. 4(b). In general, the closer a point on the curve is to the left corner, the better, as
this indicates high POD versus low FPR. In the case of ISSR, when probability thresholds of 0.2 or 0.3 are applied (resulting
in decision model 2 or 3), the POD is greater than 0.8 while the FPR remains less than 0.17. However, depending on the
false positive cost (which would result from a potential re-routing despite the non-ISSR condition) and the false negative cost
(which would result from ISSR passing), a conversion threshold (aka a decision model) can be chosen to obtain an appropriate
trade-off between POD and FPR. In the hypothetical (but unrealistic) case of identical costs, the Youden Index could be used
to determine the point(s) on the ROC curve with the optimal trade-off between POD and FPR:

Youden Index = POD — FPR,

by maximizing it across all possible conversion thresholds (decision models). The range of possible outcomes is from -1 to
+1, where 1 indicates a perfect model performance, O corresponds to no better than random chance, and negative values reflect
performance worse than random guessing. The results corresponding to the ROC curve in Fig. 4(b) are summarized in Table 2.

Comparing the scores of potential decision models based on the EPS, as shown in the ROC curve in Fig. 4(b), with the results
of the deterministic ICON 2-Mom model (inset), reveals that the EPS can significantly increase the POD for ISSR detection
from 0.6 to 0.8-0.9. This improvement comes with a moderate rise in the FPR from approximately 0.1 to 0.13-0.23, depending
on the decision model employed. Notably, the Youden index also improves substantially (see Table 2).

To complement this view, and following the discussion in Section 4.1.3, the precision—-recall curve offers an alternative

perspective that focuses specifically on the model’s performance for the positive class in the context of an unbalanced dataset.
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RH;ce max Youden Index EPS decision
threshold (Det) model
1
100% 0.70 (0.50) 2
105% 0.66 (0.38) 1
110% 0.60 (0.28) 1
120% 0.51 (0.17) 1

Table 2. Youden Index (YI) for the ISSR event and for events with higher ice supersaturation; the maximum YT of the EPS based decision
models is shown together with the YT of the deterministic ICON 2-Mom model (single members) in brackets. The second column shows the

index of the decision model(s) which correspond to the maximum YI.

It plots the POD (also referred to as recall) against the precision, thereby emphasizing the accuracy of positive predictions
when the positive event is relatively rare.

Similarly to the ROC curve, in Figure 5(a), the recall-precision point for each decision model based on the EPS is plotted on
a curve. For further comparison, the values of the individual ensemble members are shown. The closer a point is to the upper
right corner, the better the trade-off between recall and precision. Overall, the precision is only moderate and gets worse for
higher ice supersaturation events. In Figure 5(b) we also show the F} score, which takes into account both precision and recall,
making it a useful scalar measure for determining the balance between the two:

precision X recall
precision + recall

Fi=2x
The F} score ranges from O to 1. For the ISSR event, the maximum F} score is 0.61, obtained from decision models 3, 4, and
5. The corresponding F} scores of the single members (deterministic models) range from 0.54 to 0.55. For events with higher
ice supersaturation, decision models 2 or 3 perform best. In all cases, the corresponding F} score increases by about 0.06 and
0.08 compared to the deterministic models represented by the single members.

As the precision-recall curve and the F} score are not symmetric with respect to what we define as the "positive" event, e.g.
ISSR or non-ISSR, we perform a similar analysis by defining non-ISSR as the positive event. In the context of flight routing, the
correct identification of non-ISSR is also critical, as false negatives of this event could lead to unnecessary re-routing, resulting
in additional CO, emissions. For the non-ISSR event, the maximum F} score is 0.94 and is given for the decision models that
require at least 1-6 members with non-ISSR. Note that the trivial model, which always predicts non-ISSR (corresponding to
decision model 0), also has a high F; score of 0.93. In all four event cases, the scores of decision models 0-5 (note again the
adapted definition of the decision models with respect to the non-ISSR event) are very similar. Compared to the deterministic
model results, the highest-scoring decision models show an increase in F; of 0.01-0.02.

We conclude this subsection by shifting the focus from model performance on specifically defined positive events to a more

holistic evaluation using the Matthews Correlation Coefficient for the EPS-based decision models. As discussed in Section
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4.1.3, the MCC provides a balanced assessment of model skill for both event and non-event classifications, similar to the
ROC curve, and is particularly informative in the context of imbalanced datasets. In the case of ISSR/non-ISSR classification,
decision models 1-7 achieve higher MCC values than their deterministic counterparts (i.e., individual ensemble members),
with decision models 3 and 4 reaching a maximum MCC of 0.55. By contrast, the MCC values for the deterministic models

remain around 0.47 (see Fig. 5(c)).

RH;ce max MCC EPS decision POD FPR
threshold (Det) model

3 0.80 0.13

100% 0.55 (0.47) 4 073 0.10

2 0.77 0.14

105% 0.46 (0.37) 3 068 0.11

110% 0.37 (0.28) 2 0.64 0.11

120% 0.25 (0.16) 2 0.62 0.11

Table 3. For each RH; . threshold event, the maximum MCC value of the decision models based on the EPS is shown (rounded to the second
decimal place), together with the indices of the corresponding decision model(s). The MCC of the deterministic model (single members) is

given in brackets. The last two columns show the ROC values (POD versus FPR) of the decision model(s) with the maximum MCC.

Table 3 shows the maximum MCC for each RHj.. threshold event, along with the indices of the corresponding decision
models. For comparison with the ROC results, the associated POD and FPR values of these models are also provided.

To summarise this subsection, we have evaluated a range of ensemble verification metrics to assess how well our EPS model,
ICON 2-Mom EPS, can distinguish between ISSR and non-ISSR conditions (or higher ice supersaturation). These metrics
emphasize different diagnostic aspects: POD and FPR in the ROC curve; precision and recall (POD) in the precision—-recall
curve as well as in the F} score; and all entries of the confusion matrix in the MCC. Across all metrics considered, we observe
substantial improvements in the performance of decision models based on the ensemble setup compared to the deterministic
model. Depending on user requirements, a particular metric or a trade-off among metrics can be used to select the most
appropriate decision model for a given application. Although the specific ID of the best ISSR decision model depends on the
metric used, it consistently falls below 5 in all cases. For the remainder of this study, we limit our evaluation to the ROC curve

and its associated scores, POD and FPR.
4.2.2 Longer Forecast Lead Times

So far we have focused on ICON data with a forecast lead time of 12 hours. For many flights 12 hour forecasts are sufficient.
However, in general, longer forecasts should be provided. Therefore, we considered lead time increments from 12 hours up

to a maximum of 48 hours, which is the standard time horizon of weather forecasts for flight planning (see Figure 6). As the

17



420

425

https://doi.org/10.5194/egusphere-2025-3312
Preprint. Discussion started: 28 July 2025 G
© Author(s) 2025. CC BY 4.0 License. E U Sp here

(a)1.0 (b)1.0 (c) 5 1.00
m - —— T — 4 @)
3 —— — i i ¥ 3 : 1 Q
k Ll 1 =
k ] £ o754
0.8 0.8 =
L oosofx B X V% o .
g £ ol S *
T . % S o5 ww—y *—%
T 0.6 v 0.6 * » S P T
c S » g c A PO
s ' " -f:) 0.00
= —
Xl J w £
2 0.4 041 o % % » " * 0 -0.25- % RHi>100% * RHi=100%
5 ® - S RHi>105% RHi <105%
% = " . O _)50- ® RHI>110% * RHi=110%
0.2 02l ® . £ #  RHi>120% * RHi=120%
» bt ] & single member ¢ single member
3 " £ —0.75- 62 maxF, ISSR max F1 non-ISSR
3 3 1 J(B’ range members
0.0 : : : : 0.0 r T r r = -1.00+ r T r r
0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6 8 10 0 2 4 6 8 10
recall (POD) decision models decision models

Figure 5. Scores that take into account the unbalanced dataset with respect to the ISSR event or higher ice supersaturation events in two
different ways: The precision-recall curve and the F score by focusing on the performance of the model with respect to what is defined as
the *positive’ event, and the Matthews correlation coefficient by providing a balanced evaluation measure with respect to all four categories
of the confusion matrix. (a) Precision-recall curve for the EPS: For increasing prediction probability conversion thresholds, the recall (POD)
is plotted against the precision (1-FDR) of the corresponding decision model, both with respect to the ’positive’ events {RH;.. > threshold}
(bold crosses) or {RH;.. <threshold} (stars). In both cases, the scores from the decision model with the maximum F3 score are highlighted in
purple (compare (b) and note that, when £ is rounded to two decimal places, more decision models are optimal as discussed in Section 4.2.1).
For the single ensemble members, recall is similarly plotted against precision for both types of events (diamond and thin diamond). A zoom
showing the details of the top right corner is provided in the Appendix, Fig. D1 (b) F; scores, both for the positive events {RH;c. > threshold}
and {RH;.. <threshold} and for 1) the EPS decision models and 2) for the single members, for which the range is shown as transparent
lines. Note that the decision model index in the ISSR case is with respect to the required minimum number of ISSR events in the ensemble,
while the decision model index in the non-ISSR case is with respect to the required minimum number of non-ISSR events in the ensemble.

(c) Matthews Correlation Coefficient (MCC) for the EPS decision models as well as for the single members.

lead time increases, the ROC curves shift slightly to the right, indicating higher false positive rates. In contrast, no downward
shift of the ROC curves is observed for high POD values of around 0.8 for the first 36 hours. The POD only starts to decrease
after 36 hours. Overall, the degradation is not that severe, and at least up to 36 hours, the potential scores remain roughly in the
range of POD > 0.8 and FPR < 0.2.

4.2.3 Incorporating the Ensemble Spread

The results of the ROC curve are statistical in nature, in our case from an 14-month verification period. As discussed, we aim
to use them to achieve high scoring future forecasts of {RH;.. > threshold} through appropriate interpretation of the EPS
(via decision models). Here, we further incorporate ensemble spread information in order to get more reliable scores in more

specific situations. In general, the ensemble spread should be an indication of the confidence in a forecast. Therefore, in the
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Figure 6. ROC curves for increasing forecast lead times and increasing RHice thresholds; time period five months: 1.1.2025 - 31.5.2025;

ICON initial times 0 UTC and 12 UTC; Northern Hemisphere.

context of RHj.. forecasts, we further stratify the ROC curve in terms of the underlying ensemble spread at each grid point,
particularly to achieve a lower FPR. Ensemble spread is typically measured by the standard deviation. The inset of Figure 7(a)
shows a histogram of the standard deviation of RHj../100%; more than 50% of the ensemble forecasts have a std below 0.1,
with a peak near zero, and only a small proportion have std values greater than 0.2. The colored bins in the histogram serve
as a legend for the ROC curves in the main Figure 7(a): The EPS forecasts are partitioned with respect to their std and the
corresponding ROC curves are shown in the same color. The general trend is consistent with our expectation; the lower the
std, the closer the corresponding ROC curve is to the upper left corner, and vice verse, the higher the std, the closer the ROC
curve is to the diagonal, indicating that the model has low skill in these cases. In more detail, in more than half of the cases
a significantly improved ROC is obtained with POD between 0.9 and 1 and FPR <0.1 for the ISSR condition with decision
models 1-2. In case the std is greater than 0.1, the ROC curves tend more and more to the diagonal and at least five or six
members should indicate ice supersaturation to achieve an FPR of <0.1 (indicated by the vertical magenta line). In these cases,
only a lower POD can be obtained, between 0.8 and 0.3, depending on the underlying std.

As the shape of the ROC curves varies significantly along different std regimes, we were also interested in the std values of
different RH;.. regimes, particularly when RH;c is around or above 100%. In Fig. 7(b), summary statistics of std are shown
for increasing 10% bins of RH;... Following an increase in std values, they fall before 100 % and reach another local minimum

in the RHjc. regime of 100 %-110 % with a median around 0.1. The relative mean squared error (RMSE) shows a similar
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Figure 7. Event RH;c.>100%: Inclusion of the ensemble spread of RH;.., measured by the standard deviation (std) of RHic./100%. (a) ROC
stratification along the standard deviation; the inset shows the histogram of the standard deviation of RH;c./100% and also serves as a legend
for the ROCs on EPS subsets with associated std; the black ROC is the original one without std stratification. (b) Standard deviation and
RMSE for 10% bins of the predicted RH;.. mean; the coral coloured boxes represent the interquartile range (IQR) (middle 50% of the std
data) and the black horizontal line inside the boxes represents the median. The bottom of the box is Q1 (25th percentile) and the top is Q3
(75th percentile). The vertical lines extending from the boxes represent the variability of the data outside Q1 and Q3. They typically reach
the minimum and maximum values within 1.5 x IQR. All data points outside 1.5 x IQR from Q1 or Q3 are plotted individually as outliers.
Blue crosses indicate the RMSE between the ensemble mean and the observed data points. (c) Full histograms of observed and predicted
RHic. values and histograms conditioned on std<<0.1 are shown; in the observation case, the corresponding std values were defined by the
corresponding spatio-temporally matching EPS values. In the EPS model case, the counts were divided by 10 to obtain a similar range of

values to the observations.

qualitative behavior for RH;.. < 120%. For higher RHj.. regimes, the RMSE increases to its maximum over the whole RHjc,
value range.

We take another perspective in Fig. 7(c), where the full RH;j.. histograms of the observations and the ensemble forecasts
are shown, as well as both conditioned on std<0.1; in the case of the observations this is done by assigning the std-value
of the corresponding spatio-temporal EPS matching point. For low std-values (std<0.1), the corresponding conditional RH;,
histograms show a large peak for low humidity values in the same range as the full unconditioned histograms. Another peak is
observed for RH; values around 100%, which is approximately one order of magnitude lower than that of the unconditioned
histograms. This difference persists in the supersaturation tail of the histograms, where the maximum RH;.. values reached
in the conditional case are around 130%, based on the 820 000 verification points (where all counts below 100 were cut in
this plot). When comparing the conditional histograms of the model and the observations, the observation histogram exhibits a
slightly lower peak around 100%, similar to the difference observed in the full histograms. In conclusion, even when the model
exhibits high confidence, as reflected by a low standard deviation, the histogram still displays intermediate supersaturation.

This suggests that certain ISSRs can be well predicted.
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The results shown in Figures 7(b) and 7(c) are similar to the findings of Borella et al. (2024) who parameterized the subgrid-
scale distribution of water vapor in the UTLS using IAGOS data. They identified mostly quadratic behavior of the standard
deviation of RHj, relative to the mean value of RH; itself, with a maximum peak between 70% and ~110% depending on
temperature, before exhibiting an upward trend for even higher RH;.. values. Their temperature analysis revealed that this
peak becomes lower and moves to larger RH;.. values as the temperature decreases. Our ROC stratification approach does not
consider temperature, but may do so in further studies.

The increased predictability in the regime around RH;.. ~ 100% can be explained by a more stable microphysical behav-
ior in this near-thermodynamic equilibrium state, which is captured by the model. In this regime, mature cirrus clouds are
dominant compared to young or short-lived cirrus clouds which often form in regions of high ice supersaturation, driven by
upward motion from gravity waves or deep convection. These young clouds experience rapid crystal growth due to signif-
icant mesoscale temperature fluctuations (MTFs) caused by gravity waves, which create high spatio-temporal variability in
supersaturation. The fluctuating vertical motions and ice crystal concentrations make forecasting cloud evolution difficult. As a
result, young and short-lived cirrus clouds introduce significant uncertainty in predicting supersaturation, as the microphysical
processes are highly dynamic and rapidly changing. In contrast, mature cirrus clouds, approaching thermodynamic equilibrium
(RHjc. =~ 100%), display weak supersaturation conditions, typically linked to slow, steady-state ascent. Under these conditions,
ice crystals grow and gradually deplete ambient water vapor, creating a balanced system that enhances the predictability of ice
crystal evolution and overall cloud dynamics.

In clear-sky regions, where clouds and associated microphysical processes are absent, the predictability of RH;c is governed
primarily by large-scale thermodynamic and dynamical processes. Supersaturation can persist in these regions due to the lack
of ice nuclei. Observations show that clear-sky supersaturation is often associated with weak vertical motions and low tem-
peratures in the upper troposphere, particularly in mid- and high-latitude regions (Kahn et al., 2009). However, MTFs caused
by gravity waves can still occur, challenging predictability, particularly for models that do not resolve mesoscale temperature
or humidity fluctuations. Overall, while the absence of cloud feedbacks simplifies the microphysical environment, potential
variability in temperature, humidity, and vertical motion still introduces uncertainty, i.e., the predictability of RHjc. in clear

skies depends on the given specific large- and mesoscale thermodynamic and dynamical processes.
4.2.4 Comparison with IAGOS Data

The RH;.. density of the IAGOS data, limited to the Northern Hemisphere for better comparison with our radiosonde ver-
ification, confirms the characteristic bimodal shape of the RH;.. density (see inset of Fig. 8). Compared to the ICON (and
radiosonde) data, the first peak in the IAGOS density appears shifted to the right, suggesting fewer near-zero RHje. values in
the TAGOS dataset than in the ICON data. The peak around RH;c. & 100% is shifted to the left and is less pronounced in the
TAGOS data. It also does not reach the same high RHj.. values as ICON. Nevertheless, at least up to the event RH;.. > 120%,
the shape of the ROC curves closely resembles that of the radiosonde data (see Fig 8).
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Figure 8. ROC curve of ICON 2-Mom EPS and IAGOS data, the inset figure shows the corresponding RH;c. densities. Evaluation performed
with 625 flights from four months (August 2024, October 2024, December 2024, January 2025) on the Northern Hemisphere, leading to
~200 000 spatio-temporal samples.

5 Discussion

Below we discuss the interrelationships of our results and their implications, particularly in the context of climate-optimized
flight routing. We also consider the ROC curve of the ICON 1-Mom EPS to see what we can gain from an ensemble setup in case
of the one-moment cloud ice microphysics scheme. We compare our results with those of a recent study and discuss promising
approaches, such as neighborhood inclusion and, more generally, machine learning approaches, to build more sophisticated

meta-models with improved scores.
5.1 Interrelationships of Results and Application Implications

For the RH;..>100% event, the two-moment ice microphysics scheme introduced here significantly improves the POD com-
pared to the operational one-moment scheme. The trade-off is a slightly higher FPR; as seen in the FBI, the scheme identifies
slightly more events than are actually observed by radiosondes. However, the Matthews correlation coefficient, which is a more
balanced measure for all four categories TP, FP, FN, TN, is also increased by ICON 2-Mom compared to ICON 1-Mom.

For events with larger RHjc. thresholds, the one-moment scheme breaks down almost completely, while the performance
of the two-moment scheme deteriorates only moderately. The introduction of a 10-member ensemble setup with k-out-of-10
decision models allows fine-grained control of the balance between POD and FPR. The deterministic ICON 2-Mom model

has a POD of about 0.6 and an FPR of about 0.1 for the RH;..>100% event, while the ensemble setup covers a wide range
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depending on the decision model. For example, if the goal is to detect as many ISSR events as possible, decision model 1
offers a POD of over 0.9 at an FPR of 0.25. At the other end of the range, decision model 9 has a POD of just under 0.3 but
an FPR of almost 0. For most applications, the optimal decision model may lie somewhere in between. If adopted by aviation,
the right balance would be found by quantifying the exact costs of false positives (unnecessary diversions) and false negatives
(condensation trails). The ability to predict RH;. events well above 100% may prove helpful in estimating costs.

If the ensemble spread is also taken into account, even finer control of POD or FPR is possible. Stratifying the ROC curve
by the standard deviation of RHj. reveals that situations where ensemble members are in strong agreement tend to yield
good categorical scores (ROC curve near the upper-left corner), whereas situations with large ensemble standard deviations
result in values that are only marginally better than random chance (ROC curve near the diagonal). Notably, this stratification
requires only the ensemble data itself and can therefore be incorporated into the meta-model. For instance, if the primary
objective is to keep the FPR below 0.1, decision model 1 suffices for low-spread data, whereas decision models 5 or 6 are
more appropriate when dealing with high-spread conditions. This approach opens the possibility of constructing more refined

models with improved scores by combining the basic decision models.
5.2 Ensemble Verification of ICON 1-Mom EPS

We also evaluated the ensemble data of the operational ICON 1-Mom EPS with respect to RH;... We wanted to compare the
improvement of results such as the POD due to the ensemble setup when the microphysical scheme has not been adapted to a
two-moment scheme. Therefore, we considered the ROC curve for the operational 40-member EPS as well as for 10-member
subsets, compare Appendix Figure B1. By similarly defining decision models for ISSR, the POD can be increased to more
than 0.8 with an FPR remaining below 0.2, which holds true for both the 40- and 10-member EPS. The full EPS yields a more
fine-grained curve with slightly higher POD values in the top left corner than the 10-member EPS. Overall, the potential of an
ensemble is highlighted in both cases, especially with respect to a possible increase in POD. However, the operational 1-Mom
EPS still fails to predict events with higher RH;.. values (see inset in Fig. B1), as it relies on an NWP model with insufficient
physical parameterization for larger RH;j.. values. This finding again confirms that a high quality model is a fundamental part
of the success of an EPS (Wang et al., 2018; Du et al., 2018).

Finally, we wanted to confirm that the specific selection of ten members from the original 40 had little or no effect on the
scores due to the way the ensemble is generated. Therefore, we performed a 10-out-of-40 bootstrap and considered the mean
and standard deviation of the corresponding points of the ROC curves of each subset EPS. The resulting standard deviation is

negligibly small, encouraging us to transfer this finding to our ICON 2-Mom EPS, using the first ten members.
5.3 Model Resolution and Neighborshood Consideration

Several leading high-resolution NWP models have been validated with respect to RH;.. using radiosonde data in Thompson
et al. (2024). The radiosonde data used were from 2022, covering ten months, and included data from radiosondes of lower
or unknown quality than the Vaisala RS41 radiosondes. Model data were interpolated onto radiosonde data, which differs

from our approach of interpolating radiosonde data onto model data. The most comparable results are the POD and FPR for
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RHjce >99.99% events, where (POD, FPR) values of (0.46, 0.09) were obtained for the S-WRF model, (0.19, 0.02) for the
GFS, and (0.50, 0.10) for the IFS. In all cases, the deterministic model was evaluated.

The study also introduced a 3D neighborhood verification, where the number of ISSR events of horizontal and vertical
grid point neighborss affects the identification (definition) of true positives, false positives, false negatives and true negatives.
Although in this study neighborhood incorporation is used for model comparison verification, it could also be used to define
another meta-model - in this case not based on an EPS model, but on a deterministic NWP model. Of course, a similar definition
could also be introduced based on an EPS model. However, although the concept of including neighbors into a model to identify
ISSRs is worth exploring, the neighborhood verification presented in the study corresponds to two different models, where the
one to be used is individually selected for each radiosonde observation, depending on whether ISSR was actually observed or
not. This conditioning on the observation may improve the verification results, as the knowledge of the observation determines
the decision of which model to use. For our purpose, which is to define a model for future predictions, it is not appropriate to
condition this decision on the observation. But even when including only model neighbors values into a meta-model, the grid
resolution we currently use (about 26 km horizontally and about 200 m vertically in the height range of interest) may be too

low to adequately account for horizontal neighbors.
5.4 Prediction Improvement via Machine Learning

As evidenced by the ad hoc nature of decision models in both prior studies and this work, there is value in pursuing a more
general approach to post-processing NWP data. While the k-out-of-10 decision models are based on intuitive thresholds, they
are ultimately heuristic in nature — comparable to, for example, a binary deep neural network classifier trained and validated
on model and radiosonde data. Due to the small amount of data (~ 820000 samples), we chose to use the gradient boosting
library CatBoost in classification mode. The results are shown in Appendix Fig. E1. The CatBoost model shows a slight
improvement in the upper left region of interest compared to the k-out-of-10 decision models. In addition, the ROC curve is
almost continuous and at high RH;., gives access to POD values that are unattainable even for the 1-out-of-10 model, giving a
greater degree of control over the desired balance between POD and FPR. Thus, the model reduces the need to run an EPS with
many members (but more members slightly improve the predictions; see the 1-moment case in Fig. B1). Another advantage of
the model is that more features than just RH;.. itself can easily be added as model inputs. Even extending the feature vector
with physical quantities of neighboring cells is equally feasible. The results are very promising and more complex models are

being investigated.

6 Conclusions

This study demonstrates the great potential of an EPS model for ISSR prediction, based on the ICON NWP model with an
adapted two-moment ice microphysics scheme. The two-moment scheme more accurately captures the physical conditions

associated with (higher) ice supersaturation, which many one-moment schemes struggle to represent or fail to identify. Prior
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to evaluating the ensemble setup, the two-moment scheme underwent a careful verification process to confirm its suitability to
represent ice supersaturation in NWP applications.

The EPS model itself has served as the foundation for further meta-model developments aimed at constructing deterministic
models of ISSR/non-ISSR classification and higher ice supersaturation. These models are designed to provide flight planners
with well-scored predictive tools that support actionable decision-making.

Simple k-out-of-N decision models spanned a wide range of POD-FPR values, with many of them achieving a significantly
higher POD than the original deterministic NWP model while having only slightly worse FPRs. The k-out-of-N models were
further used to define another meta-model by adaptively choosing k according to the ensemble spread, where situations with
strong agreement of all members use a smaller k, and situations with disagreement use a larger k, in order to keep the FPR
below a certain target level.

These approaches were statistical in nature, meaning that we used classical statistical methods and verification results to
define a meta-model that functions as a newly developed forecast model. Building on this methodology, we trained a gradient
boosting tree classifier representing a more advanced meta-model. Despite being trained in under a minute using default
hyperparameters, the model outperformed the k-out-of-N models in the POD-FPR region of interest. Additional advantages of
this model include an almost continuous ROC curve and its ability to integrate additional features in a straightforward manner.

While these investigations on the characteristics of the ICON 2-Mom EPS system were ongoing, a contrail avoidance trial
based on the ensemble mean of this system rerouted more than 100 flights. The results presented in this study demonstrate that
EPS-based meta-models bring us even closer to reliably identifying the potential for persistent contrail formation.

The results of this study can also be informative for the European Union’s recently established Monitoring, Reporting
and Verification (MRV) system, where climate response models are used to quantify the trade-off between contrails, CO2
emissions and other greenhouse gases. Climate response models require up to 15 meteorological parameters, such as humidity,
temperature, pressure and wind fields, of which RHjc. is of utmost importance for the contrail component, and it is RHjc that is
often poorly predicted by state-of-the-art operational NWP models. This study is a step towards improved prediction of ISSR
and RHjc..

Code and data availability. The verification code and data are available under Zenodo (https://doi.org/10.5281/zenodo.15881140).
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Appendix A: The Two-Moment Cloud Ice Scheme

The two-moment cloud ice scheme in ICON is an extension of the operational one-moment cloud ice scheme. It adds a
prognostic equation for cloud ice number density and includes explicit ice nucleation processes. The original one-moment
scheme is a legacy code developed by Giinther Doms at DWD in the 1990s for the COSMO model, which was then known
as the Lokalmodell (LM), and operated at a horizontal grid spacing of 7 km (Steppeler et al., 2003). In the 2000s, the same
one-moment scheme was used in the operational global model GME, the predecessor of ICON (Majewski et al., 2002). A
detailed description of the original one-moment cloud ice scheme is provided in Doms et al. (2021). It shares many similarities
with the one-moment schemes by Lin et al. (1983) and Rutledge et al. (1986), both originally developed for mesoscale models.
Over the past 25 years, the operational one-moment cloud ice scheme has undergone many modifications, documented in
Section 5.8 of the COSMO 6.0 documentation. Notable updates include warm-rain processes based on Seifert and Beheng
(2001), snow particle geometry following Wilson and Ballard (1999), and snow size distributions derived from empirical
relationships by Field et al. (2005). Ice crystal concentration is parameterized using the empirical formula by Cooper (1986).
In the two-moment scheme, the diagnostic ice particle number concentration is replaced by a prognostic equation. Examples
of similar hybrid schemes include those by Reisner et al. (1998) and Thompson et al. (2004), though these originally used purely
temperature-dependent ice initiation. Kohler and Seifert (2015) present a two-moment scheme that accounts for deposition
nucleation based on ice supersaturation, and includes homogeneous freezing of sulfate aerosol droplets at low temperatures.
The version of the two-moment scheme used in this study is a simplified and updated version of Kohler and Seifert (2015,
hereafter KS15). The two-mode representation in KS15 is omitted for computational efficiency, as are the timestep refinements
for homogeneous nucleation.
In a two-moment scheme, sources and sinks of ice particles must be explicitly parameterized. The three primary sources of

ice particles are homogeneous nucleation, heterogeneous nucleation, and detrainment of ice from deep convective clouds.
Al Deep Moist Convection

ICON parameterizes moist convection using a bulk mass flux convection scheme (Tiedtke, 1989; Bechtold et al., 2008). For
cloud ice detrainment from convection, a mean particle diameter of D; ¢ony = 200 pum is assumed, corresponding to a mean
mass of 7 cony = 1072 kg. A smaller mean mass would increase the number of detrained ice particles in the upper troposphere,
leading to shorter phase relaxation times in convective anvils and reduced ice supersaturation. The assumed size also affects

the effective radius of anvil clouds explicitly represented in the model.
A2 Homogeneous Ice Nucleation

For homogeneous ice nucleation, the parameterization by Kircher et al. (20006) is used. It accounts for the presence of pre-
existing ice particles and is applied using grid-scale vertical velocity and ice supersaturation. However, this neglects subgrid-

scale variability, which may lead to an underestimation of nucleation events. The impact on cloud ice number concentration is
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less straightforward. While nucleation events in nature occur on much smaller spatial scales, the model assumes that nucleated

particles are evenly distributed across the grid box once the event is triggered.
A3 Heterogeneous Ice Nucleation

Heterogeneous nucleation is represented using the INAS (Ice Nucleating Active Sites) approach of Ullrich et al. (2017), which
includes parameterizations for deposition and immersion freezing on mineral dust and soot. Since prognostic aerosol fields are
not available in ICON, but only in ICON-ART, a constant dust number concentration of Ngu = 1 x 102 m~3 is assumed in the

upper troposphere above py = 200 hPa. Below that pressure height the profile increases following
. p
Naust (p) = Nusto max {mln [GXP <7dustp> 7200:| ) 1} (A1)
0

with Ygust = 1 x 1073, The dust surface area Saust 18 calculated based on a lognormal particle size distribution with a mean

diameter of 1 ym and a standard deviation of 2.5. The number of nucleated ice particles is then diagnosed as:
N} = Ngust {1 — exp [=Sausns (T, 5i)] } (A2)

Here, ng is the INAS density in m~2, parameterized according to Eq. (7) for deposition and Eq. (5) for immersion freezing in
Ullrich et al. (2017).

In numerical models, newly formed ice particles are typically diagnosed each timestep using AN; = N — NP, where N/
is the number of pre-existing ice particles. However, this can overestimate heterogeneous nucleation since N is reduced by
sedimentation or aggregation, while Ny, remains constant. This effectively creates an unlimited reservoir of ice-nucleating
particles. To avoid this artifact, a budget variable is introduced as described in KS15. A relaxation timescale of two hours is

applied to simulate the recovery of nucleating particle availability due to atmospheric mixing.
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Appendix B: Ensemble Setup of Operational ICON

Fig. B1 compares the ROC curves of the ICON 1-Mom EPS and the ICON 2-Mom EPS for RH;.. > 100% events. The 1-Mom
EPS is noteworthy as it is the operational ICON model. The 1-Mom 10-member data was obtained by resampling. Overall, the
2-Mom 10-member EPS performs as well as the 1-Mom 40-member EPS, while the 1-Mom 10-member EPS performs slightly
but significantly worse. For larger RH;, thresholds, the I-Mom EPS breaks down, as shown in the inset.

1.0

RHi>100%: 2-Mom 10-EPS
—=— RHi>100%: 1-Mom 40-EPS
/ —— RHi>100%: 1-Mom 10-EPS

0 Higher RHi: 1-Mom 40-EPS

0.8

POD

0.6

0.4 1

~ —m— RHi > 102%
—=— RHi > 104%
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0.0 ¥ T T :
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Figure B1. ROC curves for the ICON 2-Mom EPS (orange), the operational ICON 1-Mom EPS with 40 members (blue) and for the
corresponding ICON 1-Mom EPS subsets with 10 members (green). For the latter, we randomly selected 1000 10-member EPS subsets,
calculated the ROC curve for each and plotted the mean and standard deviation of the corresponding points on the curve. The inset figure
shows ROC curves for the ICON 1-Mom 40-member EPS for higher RHjc thresholds up to 106%. Evaluation for three months (August
2024, October 2024, January 2025); ICON initial times 0 and 12 UTC; ICON forecast lead time 12h; Northern Hemisphere.
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Appendix C: Calculation of RHjc,
C1 Computation of RH;., for radiosonde data

In the TEMP BUEFR files, as disseminated through the Global Telecommunication System (GTS), the dew point temperature
(Ty) is provided, which allows us to compute the water vapour partial pressure (e) using the formula from Hardy (1998), ensur-
ing consistency with the processing applied by radiosonde manufacturers, such as Vaisala. We further calculate the saturation

vapour pressure over ice (e;) consistently with the formula used in ICON which is given by

exp(bgi (T — bg))

;i =Db
¢ ! T —by;

(C)
with coefficients

b1 =610.78, by; = 21.87, by = 273.16, by; = 7.66.

and referred to as the Magnus-Tetens-Murray approximation (Magnus, 1844; Tetens, 1930; Murray, 1967). Therewith, we

receive
e

RH;.. = —100%. (C2)
€i

C2 Computation of RH;, for ICON Data

First we calculate the water vapour partial pressure e by

e=r1,Tpqv,

where the temperature 7" (in K), the density of moist air p (in kg/m?), and the specific water vapour content quv (in kg/kg)
are output variables of ICON, and r,, = 461.51 is the gas constant for water vapour. Finally, we calculate e; again with C1 and
RH,.. with C2.

Note that recently, as of May 2025, the coefficients in the C1 formula for the saturation vapour pressure over ice in the
operational ICON model have been updated. We still use the old version of the coefficients given in C1 in our dedicated system

and therefore in our verification analysis. However, at -37°C, the error is only about 2%.
C3 Computation of RH;., for IAGOS Data

In the IAGOS NRT dataset, RH; is already included and has been calculated using the formula from Sonntag (1994), which

is very similar to the Hardy formula.
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Appendix D: Details of Precision-Recall Curve for non-ISSR

In Fig. D1 a zoom of the top right of Fig. 5 is provided, where the details of the precision-recall curve for the non-ISSR event

and for the events {RH;.. < threshold} with threshold in {105%,110%,120%} can be seen. Note that decision model k here

refers to the decision model which requires at least k events with {RH;.. < threshold}.

1.00
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recall (POD)
Figure D1. Precision-recall curve of events {RH;.. < threshold} with threshold in {100%, 105%,110%, 120%} (zoom of top right of Figure

5). Stars on the lines indicate the scores corresponding to the decision models based on the EPS. The pink cross highlights decision model 4

for which the maximum F7 score is obtained. Thin diamonds inidcate the scores of the single ensemble members.
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Appendix E: Binary Classification Models: CatBoost

CatBoost is a machine learning library based on gradient boosting on decision trees, where input features are either real values
or categorical values. Prediction can happen either as regression or classification. For the task at hand, CatBoost was used in

classification mode, with the cross-entropy loss J used for training:

N
TP =~ D lslog(p) + (1~ ) log(1 — p.)]

where N is the total number of samples (spatio-temporal matching points of model and observation), y; is 1 if an event was
observed, otherwise 0, and p; is the prediction probability of the model. The samples were divided into 75% training and
validation data and 25% test data. The test data were taken from different months than the training/validation data to minimise
the effect of potential correlations in the data. Figure E1 shows the performance of the model on the test data, compared to the

EPS-based decision models of this study applied to the test data period.
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Figure E1. Comparison of ROC curves of EPS-based CatBoost and EPS-based decision model. CatBoost input features were the RHic.
values of all ten members and the mean temperature. Solid blue ROC curves: Training and validation period from April to December 2024;
test data from January to March 2025; ROC calculated for the test data period. Light blue ROC curves: ROC for the EPS-based decision
model, evaluated over the test data period. Solid and light orange curves indicate the same setting but with a different training and validation
data period (July 2024 to March 2025) and a different test data period (April-June 2024). Except for a larger tree depth of 10, all CatBoost

settings were kept at default, and training took about 30 seconds per RHjc. threshold.
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